Advanced uses of SPI at Mustang

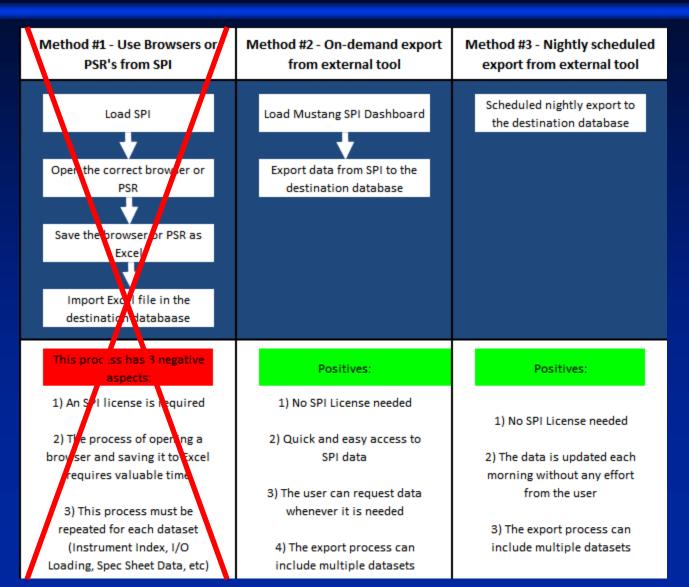
Mustang's use of external tools in conjunction with SPI

Today we will discuss tools to perform the following functions:

Export data to consumers

 Mine data from current and past jobs simultaneously

 Audit projects to improve quality and consistency


Exporting data to consumers

Most projects have at least 2 non-Instrument project groups that need SPI data to complete their tasks.

It is important to our success to be able to empower these groups with the ability to get SPI data themselves.

Exporting data to consumers

Exporting data to consumers – Example

Date: Friday, November 4th

Project details: Multiple projects from the same client being managed by a common automation team.

Task: Automation engineer to export Instrument Index data and I/O Loading data from 3 projects. Data is to be placed in 3 separate msAccess files.

Start time: 2:40:28 PM

Completion time: 2:42:00 PM

Duration of task: 1 min 32 seconds

Exporting data to consumers – Protecting database connection info

How do we provide data without giving out server and database connection information?

- For methods #2 and #3, as discussed previously, Mustang uses published .Net applications.
- These published applications give the user the functionality they need by simply picking their project and requesting updated data. No database connection information or login credentials are needed.

Exporting data to consumers – Others Concerns

By allowing easy access to SPI data ondemand, there is the danger of incomplete data being used by other disciplines.

- Consumers must understand that data extracted directly from SPI is often not 100% ready for use throughout the project.
- Strong communication must be kept with the instrumentation project team to make sure that all parties understand the difference between published data and directly extracted data.

Exporting data to consumers – Setup

In order to provide easy access to SPI data, an admin must meet with the consumer and discuss the desired dataset to be exported.

- This setup time is minimal and saves a large amount of time over the life of the project.
- The process keeps the admin team informed of the special needs of the project.

Exporting data to consumers -Summary

At Mustang we strive to make heroes of each part of our project team.

When it comes to SPI data, one way we can make heroes is by increasing the availability of the data and allowing other people to excel.

SPI Data Mining – Using current and past projects

Each project that uses SPI has such a large bank of information that can be used during project execution, during commissioning and startup, and later as we prepare for future projects.

Because Intergraph has allowed the underlying database to remain open, we can tap into this bank of information and improve the way we work.

SPI Data Mining – Multi-project data gathering

The ability to gather data from multiple projects can be extremely valuable for many reasons, including:

- ForecastingProgressing
- Auditing
- Comparing

SPI Data Mining – Multi-project statistics

<

- 15 projects from	🖉 Mustang SPI Dashboard	
 15 projects from 	File Options 🕜 Help Config	
3 different SPI	Select Project(s) SPI Statistics SPI Engineering Data Pacesel	ter Data Project Specific Functions Other Functions
🏄 Project HT1:Metrics - Tags		
✓y Update Data Karport to Excel ↔ Autofit Column Width Opti-	ns 🕜 Help	Select All De-Select All
Records Returned: 9		Visible Column
Sorting Criteria (Columns shown bold)		Project Name
		Engineer Name
		Plant Name
Filtering Criteria (Columns shaded to match filteria type)		Area Name
		Unit Name
F -584000		✓ Loop

	Loop	Loop Service	Loop Function Name	Loop Function Desc	Loop Туре	Loop Measured Variable	Loop Measured Variable Desc	Tag	Service	Ю Туре	Junction Box
•	F -584000	PROCESS FLAR	×	×	PCS	F	FLOW RATE	FE -584000A	PROCESS FLAR	×	
	F -584000	PROCESS FLAR	×	×	PCS	F	FLOW RATE	FQIT -584000	PROCESS FLAR	AI-PCS	
	F -584000	PROCESS FLAR	×	×	PCS	F	FLOW RATE	FIC -584000	PROCESS FLAR	×	
	F -584000	PROCESS FLAR	×	×	PCS	F	FLOW RATE	FY -584000	PROCESS FLAR	A0-PCS	
	F -584000	PROCESS FLAR	×	×	PCS	F	FLOW RATE	FE -584000B	PROCESS FLAR	×	
	F -584000	PROCESS FLAR	×	×	PCS	F	FLOW RATE	PIT -584000	PROCESS FLAR	AI-FQIT	
	F -584000	PROCESS FLAR	×	×	PCS	F	FLOW RATE	T₩ -584000	PROCESS FLAR	×	
	F -584000	PROCESS FLAR	×	×	PCS	F	FLOW RATE	TE -584000	PROCESS FLAR	×	
	F -584000	PROCESS FLAR	×	×	PCS	F	FLOW RATE	TIT -584000	PROCESS FLAR	AI-FQIT	

SPI Data Mining – Installation Detail Example

- Instrument design lead needed to track the progress of installation details (hookups) for multiple projects.
- Old-fashioned method was to open a project in SPI, open the appropriate hookup browser, get a record count, record this count, and repeat this process for each type of hookup and for each project.
- New method, calculate using the Mustang SPI Dashboard

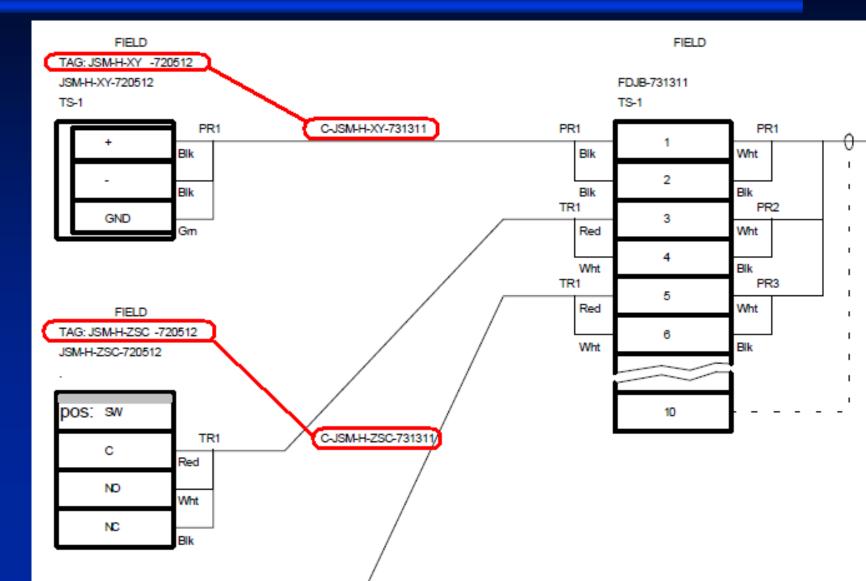
Mu	Mustang SPI Dashboard									
File	Options 🕜 Help) Config								
Sele	ect Project(s) SPI St	atistics SPI Eng	jineering Data 🛛 F	Pacesetter Da						
	Project	evel State Cu								
	Select Stats Project Level Stats Stat Grouping Options Group Le									
	Calculate Sta	tistics	Export	Stats						
	Project	Hookups - Instrument Detail Count	Hookups - Electrial Detail Count	Hookups - Support Detail Count						
	Project A1	722	0	135						
	Project C1	1514	2578	1411						
	Project C2	730	858	47						
	Project CT1	1023	1018	294						
	Project DVV1	0	1053	340						
	Project DVV2	897	5	199						
	Project DVV3	0	1324	816						
	Project DVV4	1518	0	672						
	Project HT1	96	0	0						
	Project J1	2690	2296	762						
	Project L1	276	608	50						
	Project P1	450	0	382						
	Project S1	506	0	260						
	Project S2	409	0	230						
	Project ∨1	1572	3104	1910						

SPI Data Mining – Installation Detail Example

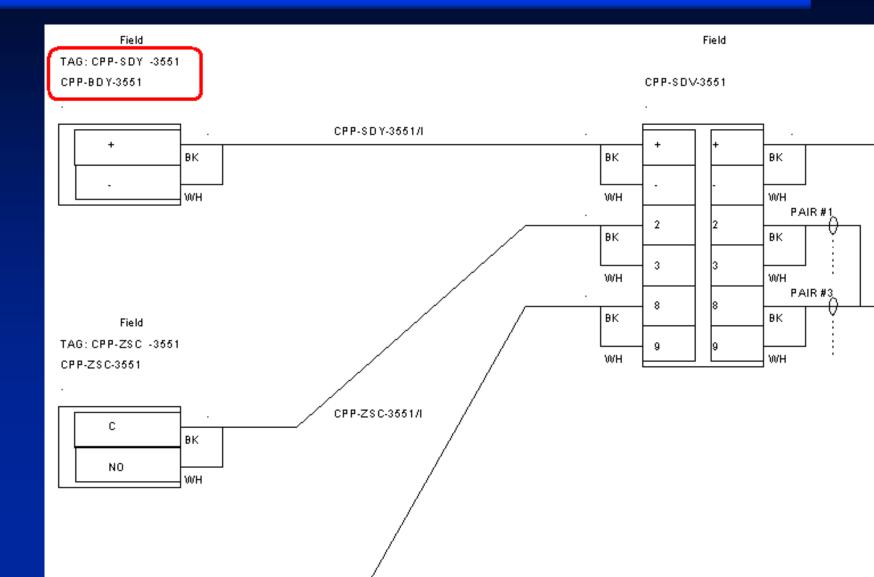
Estimated old-fashioned method – 5 minutes per project

- In the example shown to the right, this task would take 75 minutes
- Using Mustang SPI Dashboard, total time < 2 minutes.

Mu	Mustang SPI Dashboard								
File	Options 🕜 Help) Config							
			Y						
Sele	Select Project(s) SPI Statistics SPI Engineering Data Pacesetter Da								
9	Select Stats Project Level Stats Stat Grouping Options Group Le								
	Calculate Sta	tistics	Export	Stats					
	Project	Hookups - Instrument Detail Count	Hookups - Electrial Detail Count	Hookups - Support Detail Count					
	Project A1	722	0	135					
	Project C1	1514	2578	1411					
	Project C2	730	858	47					
	Project CT1	1023	1018	294					
	Project DVV1	0	1053	340					
	Project DVV2	897	5	199					
	Project DVV3	0	1324	816					
	Project DVV4	1518	0	672					
	Project HT1	96	0	0					
	Project J1	2690	2296	762					
	Project L1	276	608	50					
	Project P1	450	0	382					
	Project S1	506	0	260					
	Project S2	409	0	230					
	Project V1	1572	3104	1910					


SPI Data Mining – Quality Control

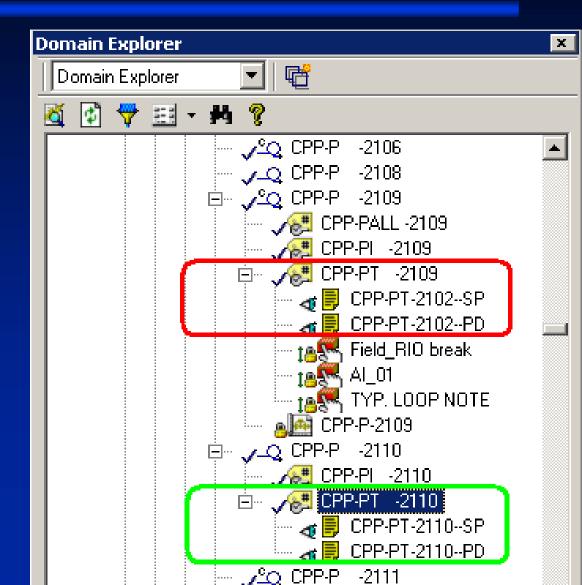
One of the most important things that we do with our Mustang SPI Dashboard is to perform quality control checks. A great example of these are tag / entity name mismatches.


- Tag
- Loop
- Device Panel
- Device Cable

- Fieldbus Virtual Tag
- CS Tagname
- Specification Sheet
- Process Data Sheet

Mismatch between Tag and Device Cable

Mismatch between Tag and Device Panel



17

Mismatch between Tag and Control System Tag

Address								1
Information:	Highway or	r network:		Device or node:				Module:
Profibus Information:	Profibus DP	bus:	s DP node nur	mber:				
		Primary Controller	/ Processor				Secondar	y Controlle
Cabinet:	PFU01-CP-8					*		
Rack:	*					*		
Slot:								
Sys. cable:								
Terminal	Channel	Channel Address	Control System T	ag			Tag Num	ber
B7	7							
C7								
A8	8		PFUXY .1.1.1.1.1.1				PFU01-XY	-56210
B8	1							
C8								
A9	9		PFUXY .1.1.1.1.1.1.1				PFU01-XY	-56220
B9	4							
C9							<u> </u>	
A10	10		PFPXYA				PFP01-XY	-14210-A
B10	4							
C10							DED04 VOV	
A11	11		PFPXYA .1				PFP01-XY	-14220-A
B11 C11	+							
A12	40		PEPXYA .1.1				PFP01-XY	44000 A
B12	12		PEPAYA .1.1				PTPUI-AY	- 14230-A
C12	+							
A13	13		PFPXYA .1.1.1				PFP01-XY	14810-4
B13	1 3							
010	4	1						

Mismatch between Tag and Spec Sheet / Process Data Sheet

SPI Data Mining – Quality Control

ject A1 :	Index Audit - Dev	ice Panel/Tag Name Mi	smatch	
te Data	🔀 Export to Excel	\leftrightarrow Autofit Column Width	Options	🕜 Help
ecords Return	ned: 42			
Sorting Criteria	(Columns shown bold)			
	(Calumna also ded to as	stala (iltaria tura)		
Filtening Criteria	(Columns shaded to ma	aton nitena type)		

	Panel Name	Tag	Service	Loop	Loop Service	Ю Туре	Instrument Type Desc	Instrument Type
	WHP-	WHP-ZS0 -1031	Sep to Subsea Li	WHP-S -1031	Sep to Subsea Li	DI-PSS	7440-Position Sw	ZSO
	CPP-BDY-3541	CPP-SDY -3541	Fuel Gas Header	CPP-S -3541	Fuel Gas Header	DO-PSS	7210-Solenoid V	SDY
	CPP-BDY-3551	CPP-SDY -3551	Fuel Gas Header	CPP-S -3551	Fuel Gas Header	DO-PSS	7210-Solenoid V	SDY
	CPP-PT-5421	CPP-PDT -5421	MEG Cartridge Fil	CPP-P -5421	MEG Cartridge Fil	AI-PCS	7162-Diff. Press	PDT
	CPP-SDY-5683	CPP-XY -5683	MEG Reboiler 0	CPP-X -5683	MEG Reboiler 0	DO-PSS	7210-Solenoid V	XY
	CPP-UV-3061-01	CPP-UV -3061	Main Gas Comp	CPP-U -3061	Main Gas Comp	A0-MGP1	7201-Control Val	UV
	CPP-BDV-3003	CPP-ZS0 -3003-01	Gas/Gas Exchan	CPP-B -3003	Gas/Gas Exchan	DI-PSS	7440-Position Sw	ZSO
	CPP-US-9401-(2)	CPP-XS -9401	Emergency Gene	CPP-X -9401	Emergency Gene	DI-PCS	7414-Contact	US
	CPP-US-9402-	CPP-XS -9402	Emergency Gene	CPP-X -9402	Emergency Gene	DI-PCS	7414-Contact	US
	CPP-AT-8401	CPP-FE -2713	Gas/Gas Exch 1	CPP-F -2713	Gas/Gas Exch 1	×	7119-Flow Meter	FE
	CPP-AT-8401	CPP-AT -01FIR-E	Main DK NW Sta	CPP-A -01FIR	Main DK NW Sta	Al	7177-Analyzer Tr	AT
<					1			

SPI Data Mining – Statistics Overview

- We offer our projects over 100 statistics
- We encourage feedback from our users and build from their requests
- We do create some statistics only for specific projects

	-
View/Hide	Stat Type
	Metrics
	Admin Check
	Index Audit
	Description Audit
	Loop Audit
	Range/SetPoint Audit
	FieldBus
	Specs
	Process Data
	Hookups
	Wiring Data
	1/0 Loading
	Loops
	Electrical
	ESL
	Cables
	Lines

SPI Data Mining – Summary

• Quick, read-only access to SPI data

Progressing and auditing capabilities

 Specific functions to meet the needs of each project

- Continued excellence with SPI
- Continued integration with SmartPlant P&ID
- Continued integration with SmartPlant Electrical

Any questions or ideas?